Auto-Tuning of Model Predictive Control for Bilateral Teleoperation with Bayesian Optimization - Ecole Nationale du Génie de l'Eau et de l'Environnement de Strasbourg
Communication Dans Un Congrès Année : 2024

Auto-Tuning of Model Predictive Control for Bilateral Teleoperation with Bayesian Optimization

Résumé

Model Predictive Control (MPC) is becoming a popular control method for teleoperation due to its ability to ensure safety constraints. However, tuning MPC is a nonintuitive process that requires significant expertise and effort. In this work, we propose a method for auto-tuning a model predictive controller in bilateral teleoperation settings. We use the Bayesian Optimization algorithm (BO) to seek the optimal weights of the MPC cost function for precise teleoperation. Our simulations and experiments show the effectiveness of the proposed tuning method.
Fichier principal
Vignette du fichier
CPHS24_0019_FI.pdf (725.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

lirmm-04795634 , version 1 (21-11-2024)

Identifiants

  • HAL Id : lirmm-04795634 , version 1

Citer

Fadi Alyousef Almasalmah, Hassan Omran, Chao Liu, Thibault Poignonec, Bernard Bayle. Auto-Tuning of Model Predictive Control for Bilateral Teleoperation with Bayesian Optimization. CPHS 2024 - 5th IFAC Workshop on Cyber-Physical and Human Systems, Dec 2024, Antalya (TR), Turkey. ⟨lirmm-04795634⟩
0 Consultations
0 Téléchargements

Partager

More